If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49b^2=2
We move all terms to the left:
49b^2-(2)=0
a = 49; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·49·(-2)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*49}=\frac{0-14\sqrt{2}}{98} =-\frac{14\sqrt{2}}{98} =-\frac{\sqrt{2}}{7} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*49}=\frac{0+14\sqrt{2}}{98} =\frac{14\sqrt{2}}{98} =\frac{\sqrt{2}}{7} $
| 2a-4(-5)=10 | | 2(x+11)=3(x-1) | | y=8*10-2 | | 1/4+3x=14 | | y=5*10+5 | | 7x+11=3x-14 | | 2x-11=8x+10 | | (6x-8)=50 | | 2x+9=2x+2x2+1 | | | | –5(2g−5)= | | 3/4x5/7=3x5/4x7=15/28 | | 5^{7x-3}=6^{x+1} | | 5n+14=-n-4 | | 7.5c=-4c-23 | | 2x(4+25)=45x-2(3+4) | | 7k–3k–4k+4k+k=20 | | 4(p+8)=−4p=24 | | (y-1)+5y=5 | | -15-10b=-9b+4 | | 5x+32=2x-8 | | 2(-x+1)+x=6 | | 12b+14=38 | | 1/2h–3=3/2–3h | | 2x–6=3x+4 | | q+15=17 | | 4c+6=30 | | f=-2+4/5f-3 | | f=–2+45f–3 | | -7=h+3 | | 2(-x-3)=-28 | | x=(4x^2+46)/22 |